Successfully Mentoring Summer Undergraduate Researchers

D Raj Raman, PhD, PE
Professor and Associate Chair for Teaching
Department of Agricultural & Biosystems Engineering
Mentoring Roles

- University Education Director and Pyrone Testbed Champion, NSF Engineering Research Center for Biorenewable Chemicals (CBiRC)
- Education Co-Director, CenUSA bioenergy (Sustainable Production and Distribution of Bioenergy for the Central USA)
- Co-Director, NSF REU Site for Sustainable Biomass Production and Processing (at ISU ABE)

- The purpose of this talk is to teach key actions of effective mentors
Why Mentor?

• **Selfish Reasons:**
 • Mentoring is a crucial skill for graduate students and post-docs
 • You will be mentoring in your next role as faculty members or industrial scientists and engineers
 • Thus…
 • **Having strong mentoring skills is transferable to industry or academia**
 • **And your mentoring experience strengthens your resume**
Why Mentor?

• Idealistic Reasons:

 • *Pay it forward*

 • Universities exist for two reasons: to **create new knowledge**, and to **build human capital**

 • Research internship programs address both of these core missions

 • Provide undergraduates the opportunity to participate in research
 • And in so doing to broaden their scientific and professional horizons

 • **Successful research internships hinge on having great mentors in the labs!**
Mentor Expectations – Broad

• Enjoy this opportunity to inspire a junior scientist/engineer
• Keep the safety of your mentee paramount
• Provide the environment needed for your mentee to thrive intellectually
Mentor Expectations – Key Actions...
Key Action #1: Be Safe

- Safety is paramount
- Ensure that you emphasize this to your mentee
- Never place your mentee in a position where they are doing something that is both outside their comfort zone and potentially hazardous
- Be safe yourself (set the tone for your mentee)
Key Action #2: Be Prepared

• Assess your mentee’s abilities based on their academic background

• Based on this, develop a well-defined project with a realistic scope
 • Provide some opportunities for student to contribute intellectually

• Have the project defined several weeks before the start of the program
 • Make sure the lab PI and other lab members are aware of the project
Realistic Scope…

• This cannot be an MS or PhD project!
• Interns need clearly defined goals
 • Not trivial ones, just clearly defined – e.g. “Determine the influence of broth magnesium concentration on growth rate of C8-producing strain of *E. coli*.”
• Experiments where methods are well known
• Experiments where equipment is well characterized and materials are on-hand
Key Action #2: Be Prepared

• Ensure all equipment and supplies are on site the day the mentee arrives
 • A 3-week wait for reagent might be OK in an MS or PhD, it can derail a summer internship

• Have key documentation ready
 • Lab techniques/protocols
 • Background reading
Key Action #3: Be There

• Upon arrival
 • Provide project details
 • Provide context
 • Provide a vision for how their work could contribute to the lab (i.e., inspire them)
 • Provide PPE and safety training if needed
 • Introduce them to the lab
 • Set expectations (best practices; responsible conduct of research)
 • Encourage questions
Key Action #3: Be There

- **During the program**
 - There is no hard and fast rule on mentee-mentor contact time, but these are not advanced graduate students – they can’t be expected to go through orientation then work alone
 - Use review of weekly report as catalyst for discussions
Key Action #4: Be Positive

- People respond to positive leadership
- On at least a weekly basis, provide positive feedback to your mentee on some aspect of their efforts
Key Action #5: Be Proactive

• Stay engaged in their project
 • One approach is to develop the poster from early on
 • Weekly written reports or literature discussion sessions also possible

• If things aren’t going well, try to understand why?
 • Is the scope of the project too large given the student’s capabilities?
 • Don’t be afraid to shift
 • Is the student not adhering to a regular work schedule and communicating with others in the lab?
 • Don’t be afraid to reiterate the expectations
Key Action #6: Keep A Beginners Mind

• Think about yourself at an earlier stage of your education

• Be **patient** with the questions you are asked

 • Some of our deepest learning comes when we are challenged to explain concepts to a newcomer
What Might You Expect In Return?

• Some useful assistance in the lab
• Perhaps a new insight
• A protégé who embraces research because of you!

“This REU has been one of the best times of my life. I am not the same person today I was in May… I became a researcher … on your watch…”
Evidence?

- First edition of podcast made April 2012
 - The recommended *Key Actions* were based on my 18 years of faculty experience
 - Hosting over a dozen undergrad or pre-college mentees in my lab
 - Directing programs that have served more than 50 summer intern participants
Better Evidence?

- In early 2013, we surveyed 116 students to test two hypotheses that underlay the 2012 presentation, namely:
 1. Mentoring is the single most important predictor of internship success
 2. The six aspects of mentoring identified are all highly relevant to overall mentoring success
Methods

• Participants received survey including questions related to the quality of experience and the behaviors of their mentors

• Linear regressions examined the correlation between overall quality of summer research internship experience and mentor behaviors
Results of Our Study...

• A total of 76 responses were received
 • 65.5% response rate
Mentoring is Critical!

- Of all five primary aspects of program, mentoring correlated most strongly with student ratings of overall program experience

Figure 1
Correlation Coefficients (r^2) of Overall Program Experience with Primary Aspects of Program
These Six Actions are Key!

- Each were correlated with the mentoring experience score at $r > 0.64$
Summary

• Be Safe
• Be Prepared
• Be There
• Be Positive
• Be Proactive
• Keep A Beginners Mind
Acknowledgements

Mari Kemis and Brandi Geisinger (Research Institute for Studies in Education, School of Education, ISU) are co-authors on the work examining intern responses to mentor behaviors.

The following directors of ISU REU programs generously allowed their students to participated in the mentoring study: Michelle Soupir (Assistant Professor, ABE), Sriram Sundararajan (Associate Professor, ME); Monica Lamm (Associate Professor, CBE); Gene Tackle (Professor, AGRON, Geo & Atmo Sci); Kan Wang (Professor, AGRON); Aurelio Curbelo-Ruiz (Program Coordinator AES); Stephen Gilbert (Assistant Professor, IMSE).

Adah Leshem (CBiRC Pre-College Education Director) catalyzed this podcast through her discussions with the author about mentor training.
Support and Disclaimers

The material presented here is based upon work supported by the NSF under award no. EEC-0813570 (Center for Biorenewable Chemicals) and EEC-100422 (SBPP REU Site), and the USDA under award no. 2011-68005-30411 (CenUSA BioEnergy). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of Iowa State University, The Department of Agricultural and Biosystems Engineering, The Center for Biorenewable Chemicals, CenUSA BioEnergy, the NSF, nor the USDA. This work was done under IRB 13-063.
Thank You!